Multidisciplinary dynamic optimization of horizontal axis wind turbine design
نویسندگان
چکیده
The design of physical (plant) and control aspects of a dynamic system have traditionally been treated as two separate problems, often solved in sequence. Optimizing plant and control design disciplines separately results in sub-optimal system designs that do not capitalize on the synergistic coupling between these disciplines. This coupling is inherent in most actively controlled dynamic systems, including wind turbines. In this case structural and control design both affect energy production and loads on the turbine. This article presents an integrated approach to achieve system-optimal wind turbine designs using codesign, a design methodology that accounts directly for the synergistic coupling between physical and control system design. A case study, based on multidisciplinary simulation, is presented here that demonstrates a promising increase (up to 8%) in annualized wind turbine energy production compared to the results of a conventional sequential design strategy. The case study also revealed specific synergistic mechanisms that enable performance improvements, which are accessible via co-design but not sequential design.
منابع مشابه
Design and Implementation of the Rotor Blades of Small Horizontal Axis Wind Turbine
Since the renewable resources of energy have become extremely important, especially wind energy, scientists have begun to modify the design of the wind turbine components, mainly rotor blades. Aerodynamic design considered a major research field related to power production of a small horizontal wind turbine, especially in low wind speed locations. This study displays an approach to the selectio...
متن کاملA Studyof the Design of Horizontal Axis Wind Turbine
In this using paper a method is presented for the aerodynamic and structural analysis of a horizontal axis wind turbine using simplified methods. In the first part of the program the optimum rotor configuration for twist and chord is determined using the momentum and blade element theories for a rotor without coning or tilting and assuming zero drag average wind velocity. Then coning angle and ...
متن کاملDesign of a Permanent-Magnet Synchronous Generator for a 2 MW Gearless Horizontal-Axis Wind Turbine According to its Capability Curves
Permanent-Magnet Synchronous Generators (PMSGs) exhibit high efficiency and power density, and have already been employed in gearless wind turbines. In the gearless wind turbines, due to the removal of the gearbox, the cogging torque is an important issue. Therefore, in this paper, at first, design of a Permanent-Magnet Synchronous Generator for a 2MW gearless horizontal-axis wind turbine, acco...
متن کاملAerodynamic Optimal Design of Wind Turbine Blades using Genetic Algorithm
Wind power has been widely considered and utilized in recent years as one of the most promising renewable energy sources. In the current research study, aerodynamic analysis of the upwind three-bladed horizontal axis turbine is carried out using blade element momentum theory (BEM), and a genetic algorithm (GA) is applied as an optimization method. Output power generation is considered as an obj...
متن کاملUnsteady aerodynamic analysis of different multi mw horizontal axis offshore wind turbine blade profiles on sst-k-ω model
To indicate the best airfoil profile for different sections of a blade, five airfoils; included S8xx, FFA and AH series was studied. Among the most popular wind power blades for this application were selected, in order to find the optimum performance. Nowadays, modern wind turbines are using blades with multi airfoils at different sections. SST-K-ω model with different wind speed at large scale...
متن کامل